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Abstract

Crack kinking in elastic solids in two-dimensional situations is studied in the case where the crack is initially
closed (without friction) due to compressive forces but kinking opens it. The ®rst problem which arises, namely the
determination of the stress expansion near the crack tip prior to kinking has been studied previously showing that

because of contact between the crack lips, the classical singular mode I term of this expansion is replaced by
another, bounded one involving a new non-singular stress corresponding to a uniform compressive stress
perpendicular to the crack lips. From there, one derives universal formulae for the ®rst two terms of the expansion
of the stress intensity factors at the tip of the open, extended crack in powers of the crack extension length.

Combining the formulae found with the principle of local symmetry one can then determine ®rst the kink angle,
which is found to always amount to precisely277.38, the sign being opposite to that of the initial mode II stress
intensity factor, and second the initial curvature of the crack extension, which is found to depend upon both initial

non-singular stresses. The problem of whether or not, after the initial kink, the crack tends to come back to its
original direction is ®nally investigated. # 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Crack kinking; Initially closed crack; Frictionless contact; Stress intensity factors; Non-singular stresses; Principle of

local symmetry

1. Introduction

A vast literature has been devoted to the prediction of crack paths in elastic solids in two-dimensional
situations subjected to arbitrary loadings, and in particular to crack kinking in the presence of mode II,
assuming absence of contact between the crack lips. Some relevant references are Goldstein and
Salganik (1974), Bilby and Cardew (1975), Chatterjee (1975), Wu (1978a, 1978b, 1979), Amestoy et al.
(1979), Cotterell and Rice (1980), Karihaloo et al. (1981), Ichikawa and Tanaka (1982), Sumi et al.
(1983), Sumi (1986), Amestoy (1987), Leblond (1989), Amestoy and Leblond (1992), Leguillon (1993).
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Here we consider the same problem but allowing for unilateral frictionless contact between the crack
lips. It is assumed that due to some compressive forces, the crack lips are initially in contact in the vicinity
of the crack tip, but that crack kinking occurs so as to open the crack, at least near its tip. The problem
investigated is to study the shape of the beginning of the crack extension (kink angle, initial curvature).

The ®rst, preliminary but indispensable task is to determine the form of the stress expansion in powers
of the distance to the initial crack tip in the initial situation where the crack is closed by compressive
forces (in the absence of friction). This has been done by Deng (1994). This author showed that due to
unilateral contact, the singular (divergent) mode I term disappears from the stress expansion, together
with the corresponding stress intensity factor KI. (The singular mode II term proportional to KII, on the
other hand, remains unchanged). The singular mode I term is replaced by some new, bounded term
involving a second non-singular stress TII representing a uniform compression stress ®eld perpendicular to
the crack lips. (The other non-singular term, involving the usual ®rst non-singular stress T � TI

representing a uniform tension or compression stress ®eld parallel to the crack lips, is una�ected).
The next task is to derive the expansion of the stress intensity factors KI�s�, KII�s� at the tip of the

open crack extension in powers of the crack extension length s. This is done in two steps. The ®rst one
consists of deriving the expression of the ®rst two terms of this expansion in terms of the initial stress
intensity factor KII, the two initial non-singular stresses TI, TII, the kink angle j and the curvature
parameter a of the crack extension. The arguments used are essentially based on homothetical
transformations and homogeneity properties, just like in the work of Leblond (1989) in the absence of
contact. The formulae obtained involve some `universal' functions depending only on the kink angle j.
The procedure does not immediately provide the values of these functions, but does indicate how to
calculate them through suitable ®nite element computations (including of course frictionless contact).
These computations are performed, in a second step, using the CASTEM ®nite element code.

It only remains then to combine the expansion of the second stress intensity factor KII�s� in powers of
s with Goldstein and Salganik's (1974) well-known and widely accepted principle of local symmetry
which stipulates that KII�s� must be identically zero all along the actual (open) propagation path, to
obtain the values of the kink angle j and the curvature parameter a of the crack extension. It is found
that because of the absence of an initial KI, the kink angle is uniquely determined by the sign of
KII: j � ÿ77:38 for KII > 0 and +77.38 for KII < 0. On the other hand, the curvature parameter a
depends on the initial stress intensity factor KII and both initial non-singular stresses TI, TII.

It is interesting to compare the signs of j and a since this comparison says whether or not after the
initial kink, the crack tends to further deviate from its initial direction. It is found that the relative signs
of j and a depend on the initial non-singular stresses TI and TII. For TII � 0, a positive (negative) TI

results in identical (di�erent) signs for j and a, and thus in a crack extension which further deviates
from (comes back to) the initial crack direction. These conclusions concerning the in¯uence of TI are
analogous to those arrived at by Cotterell and Rice (1980) in the case without contact. For TI � 0, a
negative TII (positive values being ruled out because of initial contact between the crack lips) generates
identical signs for j and a, so that the crack tends to further deviate from its initial direction. This
result is completely new and speci®c to the case where contact between the crack lips occurs initially,
since there is no such quantity as TII in the absence of contact.

2. Preliminaries

2.1. Presentation of the problem

Figure 1 schematically depicts the problem investigated. An isotropic elastic body O of arbitrary
shape is loaded in plane strain conditions through some constant (in time) displacements u p prescribed
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on the portion @Ou of its boundary and constant tractions T p prescribed on the complementary part
@OT

1. This body contains an initial crack of arbitrary shape, the tip of which is denoted O. The
curvature of this initial crack at the point O is C. Let Ox1x2 denote the frame `adapted' to the crack at
the point O. The crack extends in a direction which makes an initial angle j (the kink angle ) with the
original tangent Ox 1 at O. Let Oy1y2 denote the frame obtained from Ox 1x2 by rotating it by the angle
j. The shape of the crack extension, the length of which is denoted s, is described by the equation

y2 � ay3=21 �O
ÿ
y21
� �1�

where a is a `curvature parameter'. In fact, eqn (1), with a 6� 0, implies that the curvature of the crack
extension is in®nite at the point O. The necessity of considering such singular shapes of the crack
extension was established in many papers, notably Cotterell and Rice (1980), in the absence of contact,
and will also be apparent below when contact is present. The problem investigated will be to predict the
values of the kink angle j and the curvature parameter a, as functions of the loading.

2.2. The stress expansions near the initial and ®nal crack tips

The ®rst question which arises is that of the asymptotic form of the stress ®eld near the crack tip. In
the absence of contact, it is of the well-known form

Fig. 1. The general problem studied.

1 It can be shown that introducing a time-dependence of the loading would not modify the conclusions drawn about the path fol-

lowed by the crack, under the assumption of a proportionally varying loading; the proof is the same as in the absence of contact

(see Amestoy and Leblond, 1992).
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sij�r, y� � KI
fIij�y���

r
p � KII

fIIij�y���
r
p � Tgij�y� �O

ÿ ��
r
p �

�2�

for `adapted' polar coordinates r, y, where KI and KII are the stress intensity factors of modes I and II
and T the non-singular stress, corresponding to some uniform tension or compression stress ®eld
parallel to the tangent to the crack at its tip (which does not `see' the crack) (T � stt � ttt � sss � ttt where tt
denotes the local unit tangent vector to the crack). Eqn (2) applies in particular at the tip of the extended
crack, since kinking is assumed to result in an open crack extension, provided of course that KI, KII and
T are interpreted as those quantities KI�s�, KII�s�, T�s� after propagation over a distance s. But it does not
apply to the initial situation where the crack is closed in the vicinity of its initial tip O. It has been shown
by Deng (1994) (in the presence of friction, but here we apply his result without it) that the stress
expansion then takes the form

sij�r, y� � KII
fIIij�y���

r
p � TIgIij�y� � TIIgIIij�y� �O

ÿ ��
r
p �

�3�

where KIIfIIij�y�=
��
r
p

still represents the singular mode II ®eld, but where the singular mode I term has
disappeared. On the other hand, the non-singular, bounded term now comprises contributions arising
from two (instead of just one) non-singular stresses, TI � T which still represents a uniform tension or
compression stress ®eld parallel to the tangent to the crack at its tip, and TII which represents a uniform
compression stress ®eld perpendicular to this tangent (TII � snn � n � sss � n where n denotes the local unit
normal vector to the crack); TII is necessarily negative since contact is assumed to take place. Although
Deng's (1994) rigorous proof is of course quite welcome, eqn (3) could easily be foreseen by noting that
in the presence of contact, the (compressive) mode I ®eld does not `see' the crack any longer and thus
must become non-singular.

It is clear in Fig. 2 that if the initial stress intensity factor KII is positive, j must be negative for the
crack extension to be open; conversely, if KII<0, one must have j > 0. Furthermore, the two situations
are symmetrical. We shall therefore just consider the case where KII > 0 and j<0 in the sequel, except at
speci®c places where we shall indicate what the results become for KII<0 and j > 0.

2.3. Homogeneity property of the type of problem considered

It is important to note that the problems of elastic fracture mechanics with unilateral frictionless
contact between the crack lips considered in this paper, though of course non-linear, are positively

Fig. 2. The two cases where the crack extension is open: (a) KII > 0, j < 0; (b) KII < 0, j > 0.
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homogeneous of degree 1; in other words, one can obtain a new solution from an old one by multiplying
all displacements and stresses by some positive factor l. Indeed, the conditions of frictionless unilateral
contact between the crack lips read, at the generic point of the crack:

s�tn � sÿtn � 0 and

8<: s�nn � sÿnn � 0 and (un) > 0
or

s�nn � sÿnn < 0 and (un) � 0

where stn � ttt � sss � n, ttt and n denoting the unit local tangent and normal vectors to the crack as above,
and (un) � u� � nÿ uÿ � n is the discontinuity of normal displacement across the crack. It is clear that if
these conditions are satis®ed on the whole crack for some ®elds u and sss, they are also satis®ed by the
®elds lu and lsss for l > 0. The result follows from there and the linearity of the equations of elasticity.

One might be surprised by this property since it does not hold for such classical contact problems as that
of Hertz for instance. The origin of the di�erence is as follows. In the Hertz problem, the points which
come into contact are separated initially, so that the contact conditions involve the initial distance between
these points. Thus they are violated if one changes the displacement ®eld without modifying the (initial)
geometry. Here, the points of the crack lips which come into contact are already confounded initially.
Thus there appears no such thing as the initial distance between the points in the contact conditions, which
is why they remain satis®ed if both the displacement and stress ®elds are multiplied by a positive constant.

3. The stress intensity factors just after the kink

The object of investigation of this section is the ®rst term of the expansion of the stress intensity
factors at the tip of the extended crack in powers of the crack extension length s, or in other words, the
stress intensity factors K �I , K

�
II just after the kink:

K �I � lim
s 4 0

KI�s�; K �II � lim
s 4 0

KII�s�:

More speci®cally, we shall prove (with a reasonable assumption that will be stated below) that whatever
the geometry and the loading, K �I and K �II depend solely on the stress intensity factor KII of the initially
closed crack and the kink angle j (linearly with respect to KII with the hypothesis KII > 0 stated above).
This result is the equivalent, in the case where the crack lips are initially in contact, of that derived by
Leblond (1989) in the absence of contact and later con®rmed by Leguillon (1993), namely that in that
case K �I and K �II depend only on the initial stress intensity factors KI, KII plus the kink angle j (linearly
with respect to KI and KII).

We shall use the vectorial notations

K�s� � �KI�s�, KII�s��; K� � ÿK �I , K �II�; �4�

thus

K� � lim
s 4 0

K�s�: �5�

Let us ®rst suppose that the body considered is a circular disk of centre O (the initial crack tip where
kinking occurs), of radius R, containing an edge2 crack and subjected to some prescribed traction ®eld

2 So that there is no need to specify the length of the principal branch of the crack for a full geometric description of the pro-

blem.
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T on its boundary (Fig. 3). The vector of stress intensity factors KI�s�, KII�s� at the tip of the extended
crack can be symbolically expressed as

K�s� � L�j, R, C, a, s; T� �6�
where L is a (vectorial) functional, depending on the geometric parameters j, R, C, a, s, of the traction
®eld T, positively homogeneous of degree 1 (but of course non-linear) with respect to that ®eld:

L�j, R, C, a, s; lT� � lL�j, R, C, a, s; T� �8l > 0� �7�
since it has been noted above that problems of the type considered are positively homogeneous of
degree 1.

Let us now multiply both the distances (change of scale) and the displacements by some positive factor
l, while keeping the strains and stresses (and therefore the surface tractions) unchanged. We thus obtain
a new solution to the equations of elastic fracture mechanics with contact. In this operation, the stress
intensity factors at the tip of the extended crack, being limits of certain stress components times the
square root of a vanishingly small distance, are multiplied by

���
l
p

. Since in the homothetical
transformation considered, the parameters j, R, C, a, s become j, lR, C=l, a=

���
l
p

, ls respectively, it
follows that the functional L veri®es the following `positive homogeneity' property with respect to its
geometric arguments:

L

�
j, lR, C=l, a=

���
l
p

, ls; T
�
�

���
l
p

L�j, R, C, a, s; T� �8l > 0�: �8�

Now let L��j, R, C, a; T� denote the limit of the functional L�j, R, C, a, s; T� for s4 0 (this is the
functional that gives the stress intensity factors K �I , K

�
II just after the kink). Just like L, L� is positively

homogeneous of degree 1 with respect to the loading T:

L��j, R, C, a; lT� � lL��j, R, C, a; T� �8l > 0� �9�
as is evident by taking the limit s4 0 in eqn (7). Taking the same limit in eqn (8), one also obtains a
`positive homogeneity' property for L� with respect to its geometric arguments analogous to that for L:

Fig. 3. The particular case of a circular disk.
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L�
�
j, lR, C=l, a=

���
l
p

; T
�
�

���
l
p

L��j, R, C, a; T� �8l > 0�: �10�

We now come back to the general case of a body of arbitrary shape (Fig. 4). We consider, within this
body, circular disks of centre O and su�ciently small radius R for the crack to intersect their boundary,
i.e. to be an edge crack within them. Let T (R, s ) denote the traction ®eld exerted on the boundary of
the disk of radius R, when the length of the crack extension is s, as a result of the application of the
prescribed displacements u p on @Ou and prescribed tractions T p on @OT. The mechanical ®elds inside
the disk of radius R, and therefore the stress intensity factors at the tip of the extended crack, are
unchanged if one eliminates the exterior of this disk while preserving the traction ®eld T (R, s ) exerted
on its boundary. Thus formula (6) applies and yields

K�s� � L
ÿ
j, R, C, a, s; T�R, s��: �11�

We now introduce the assumption that the stresses at a given, ®xed point are continuous and
di�erentiable with respect to s at the point s = 0. These properties were established in a fully rigorous
way in the absence of contact by Leblond (1989). The proofs unfortunately cannot be easily extended to
account for the possibility of contact. This assumption is quite reasonable, however. It implies that the
traction ®eld T (R, s ), for a ®xed R, is of the form, for s4 0:

T�R, s� �T�R� �O�s� �12�

where T (R ) denotes the traction ®eld exerted on the boundary of the disk of radius R prior to kinking
and propagation of the crack.

Fig. 4. Circular disk centered at the original crack tip in an arbitrary body.
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With that assumption, eqn (11) becomes, in the limit s4 0:

K� � lim
s 4 0

K�s� � L�
ÿ
j, R, C, a; T�R��, �13�

which shows that the stress intensity factors just after the kink depend on the mechanical ®elds only
through their values prior to kinking. It only remains to take the limit R4 0 in eqn (13) to get the
desired result. Prior to doing that, however, we transform this formula, using eqn (10) with l � 1=R,
then eqn (9) with l � ����

R
p

, into

K� �
����
R
p

L�
ÿ
j, 1, RC,

����
R
p

a; T�R�
�
� L�

ÿ
j, 1, RC,

����
R
p

a;
����
R
p

T�R�
�
: �14�

Now, by eqn (3), the surface traction corresponding to the ®eld T (R ) is of the form

T �R, y� � KII����
R
p f II�y� � er�y� �O�1�

where er denotes the unit radial vector, so that����
R
p

T�R� � KII

�
f II�y� � er�y�

	
�O

ÿ ����
R
p �

�15�
where fT�y�g denotes the ®eld de®ned by the surface traction T�y�. Inserting eqn (15) into eqn (142),
taking the limit R4 0 (which is licit since eqn (14) holds for all su�ciently small values of R ) and using
eqn (9) with l � KII (which is recalled to be assumed to be positive, as required by this equation), we get

K� � L�
ÿ
j, 1, 0, 0; KII

�
f II�y� � er�y�

	�
� KIIL

�ÿj, 1, 0, 0; �f II�y� � er�y�
	�

�16�
or, in component form,8<: K�I � ~F I,II�j�KII

K�II � ~F II,II�j�KII

�17�

where ~F I,II�j� and ~F II,II�j� denote functions depending only on j and not on curvature parameters (the
commas here do not denote a di�erentiation, they only serve to clearly separate the indices). This result
is to be compared to that obtained by Leblond (1989) in the absence of contact, namely(

K�I � FI,I�j�KI � FI,II�j�KII

K�II � FII,I�j�KI � FII,II�j�KII

�18�

where the Fp,q�j� are analogous functions depending only on j. In both cases (with or without contact
initially), all these functions are universal in the sense that they apply to any situation, whatever the
geometry and the loading.

4. Second term of the expansion of the stress intensity factors in powers of the crack extension length

We now wish to study the form of the second term, which will be seen to be proportional to
��
s
p

, of
the expansion of the stress intensity factors KI�s�, KII�s� at the tip of the extended crack in powers of s.

We ®rst introduce the expansion of the functional L de®ned in the preceding section in powers of s:

L�j, R, C, a, s; T� � L��j, R, C; T� � L�1=2��j, R, C, a; T� ��
s
p �O�s�: �19�
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The fact that the second term of the expansion of L is proportional to
��
s
p

instead of s as one would
expect at ®rst sight can be justi®ed in the same way as in the case without contact (see Leblond, 1989).
The argument a in the function L� is discarded from now on. Indeed K� has been shown in the
preceding section to be a function only of the kink angle j and the stress intensity factor KII of the
initial closed crack, which does depend on the loading T and the curvature C of that crack (whence the
presence of C in the functional L�) but is obviously independent of the curvature parameter a of the
future crack extension.

Expanding eqn (7) in powers of s using eqn (19), one easily sees that the new functional L�1=2�, just
like L and L�, is positively homogeneous of degree 1 with respect to the loading:

L�1=2��j, R, C, a; lT� � lL�1=2��j, R, C, a; T� �8l > 0�: �20�
Similarly, expanding eqn (8) in powers of s using eqn (19), we get

L��j, lR, C=l; T� � L�1=2�
�
j, lR, C=l, a=

���
l
p

; T
� �����

ls
p
�O�s�

�
���
l
p �

L��j, R, C; T� � L�1=2��j, R, C, a; T� ��
s
p �O�s�

� �8l > 0�;
identifying terms of order

��
s
p

in this equation, one ®nds that the functional L�1=2� veri®es the following
`positive homogeneity' property with respect to its geometric arguments:

L�1=2�
�
j, lR, C=l, a=

���
l
p

; T
�
� L�1=2��j, R, C, a; T� �8l > 0�, �21�

which di�ers from its counterparts, eqns (8) and (10), for L and L� by a factor of
���
l
p

.
Inserting eqn (19) into eqn (11), and accounting for eqn (12), one gets

K�s� � K� �K�1=2�
��
s
p �O�s� �22�

where K� is given by eqn (13) and K�1=2� by the formula

K�1=2� � L�1=2�
ÿ
j, R, C, a; T�R��: �23�

Thus, just like K�, K�1=2� depends upon the mechanical ®elds only through their values prior to kinking.
Using eqn (21) with l � 1=R, we transform this expression of K�1=2� into

K�1=2� � L�1=2�
ÿ
j, 1, RC,

����
R
p

a; T�R�
�
: �24�

In order to now expand this formula, which is valid for all su�ciently small values of R, in powers of
this parameter, we ®rst expand the functional L�1=2� itself (for a ®xed, given loading T):

L�1=2�
ÿ
j, 1, RC,

����
R
p

a; T
�
� L�1=2��j, 1, 0, 0; T� �

����
R
p

a
@L�1=2�

@a
�j, 1, 0, 0; T� �O�R�: �25�

We also account for the expansion of the loading T (R ), which derives from eqn (3):

T�R� � KII����
R
p �

f II�y� � er�y�
	
� TI

�
gI
�y� � er�y�

	� TII

�
gII
�y� � er�y�

	�O
ÿ ����

R
p �

: �26�

We now insert eqns (25) and (26) into eqn (24), and expand the result in powers of R using the facts
that KII is assumed to be positive and that L�1=2� is positively homogeneous of degree 1 with respect to
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the loading T, eqn (20), and therefore its derivatives @L�1=2�=@a and @L�1=2�=@T positively homogeneous
of degrees 1 and 0 respectively with respect to the same argument. The result reads:

K�1=2� � KII����
R
p L�1=2�

ÿ
j, 1, 0, 0;

�
f II�y� � er�y�

	�
� TI

@L�1=2�

@T
ÿ
j, 1, 0, 0;

�
f II�y� � er�y�

	�
� �gI
�y� � er�y�

	

�TII
@L�1=2�

@T
ÿ
j, 1, 0, 0;

�
f II�y� � er�y�

	�
� �gII
�y� � er�y�

	� aKII
@L�1=2�

@a

ÿ
j, 1, 0, 0;

�
f II�y� � er�y�

	�
�O

ÿ ����
R
p �

where �@L�1=2�=@T��j, 1, 0, 0; T� �T 0 denotes the result of the application of the (linear) operator
�@L�1=2�=@T��j, 1, 0, 0; T� on the traction ®eld T 0. Now the left-hand side here is independent of R by
de®nition. It follows that the divergent term proportional to 1=

����
R
p

in the right-hand side must
necessarily be zero. Taking the limit R4 0 in the above expression, we therefore obtain

K�1=2� � TI
@L�1=2�

@T
ÿ
j, 1, 0, 0;

�
fII�y� � er�y�

	�
� �gI
�y� � er�y�

	

�TII
@L�1=2�

@T
ÿ
j, 1, 0, 0;

�
f II�y� � er�y�

	�
� �gII
�y� � er�y�

	� aKII
@L�1=2�

@a

ÿ
j, 1, 0, 0;

�
f II�y� � er�y�

	�
, �27�

or, in component form,8<: K
�1=2�
I � ~G I,I�j�TI � ~G I,II�j�TII � a ~H I,II�j�KII

K
�1=2�
II � ~G II,I�j�TI � ~G II,II�j�TII � a ~H II,II�j�KII

�28�

where ~G I,I�j�, ~G I,II�j�, ~G II,I�j�, ~G II,II�j�, ~H I,II�j�, ~H II,II�j� are functions depending only on the kink angle
j. Again, this result is to be compared to that obtained by Leblond (1989) in the absence of contact,
namely38<: K

�1=2�
I � GI�j�T� a

�
HI,I�j�KI �HI,II�j�KII

�
K
�1=2�
II � GII�j�T� a

�
HII,I�j�KI �HII,II�j�KII

� �29�

where T � TI and the Gp�j� and Hp,q�j� are analogous functions depending only on j. Again, all these
functions are universal in the sense that in both cases (with or without contact initially), they apply to
any situation, whatever the geometry and the loading.

5. Practical method for calculating the functions ÄFp,II�jjj�

Although the above reasonings have evidenced the existence of the universal functions ~Fp,II�j�, ~Gp,q�j�
and ~Hp,II�j�, they have not provided the values of these functions. We shall now see how to calculate
these values numerically by the ®nite element method. The simplest case of the functions ~Fp,II�j� is
envisaged here. The methods for calculating the functions ~Gp,q�j� and ~Hp,II�j� are basically similar to

3 The parameter a is noted a � in the work of Leblond (1989).
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that for calculating the functions ~Fp,II�j� but involve several additional technical details, and for this
reason are relegated to Appendices A and B.

Our starting point consists of eqns (16) and (17), which imply that4

~Fp,II�j� � L�p
ÿ
j, 1, 0;

�
f II�y� � er�y�

	�
� lim

s 4 0
Lp

ÿ
j, 1, 0, 0, s;

�
f II�y� � er�y�

	�
where the de®nition of L� as the limit of L for s4 0 has been used. We now use the homogeneity
property (8) of L with l � 1=s to transform the preceding equation into

~Fp,II�j� � lim
s 4 0

��
s
p

Lp

�
j,

1

s
, 0, 0, 1;

�
f II�y� � er�y�

	�
:

We now rewrite s as 1=R and use eqn (7) with l � ���������
1=R
p

to ®nally get

~Fp,II�j� � lim
R 4 �1

Lp

�
j, R, 0, 0, 1;

1����
R
p �

f II�y� � er�y�
	�

� lim
R 4 �1

Lp

�
j, R, C � 0, a � 0, s � 1;

1����
R
p �

f II�y� � er�y�
	�
: �30�

The physical meaning of this equation is as follows. Let us consider a circular disk of centre O, of
radius R4 �1 containing a straight (C = 0) edge crack endowed with a straight (a = 0) extension of
unit (s = 1) length making an angle j with the principal branch (Fig. 5). Then ~Fp,II�j� is the p-th stress
intensity factor at the tip of the extended crack resulting from the application of the fundamental ®eld
�1= ����

R
p �ff II�y� � er�y�g on the boundary of that disk. This provides a practical way to numerically calculate

Fig. 5. The geometry used to calculate the various universal functions.

4 Here as in Section 4, we discard the argument a in the functional L�; see eqn (19) for the meaning of its other arguments.
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the functions ~Fp,II�j�, using the ®nite element method (in elasticity with frictionless contact). The
requirement R4 �1 means in practice that R must be much larger than the unit length of the crack
extension:

R� 1: �31�

6. Finite element calculation of the functions ÄFp,II�jjj�, ÄGp,q�jjj� and ÄH p,II�jjj�

All ®nite element computations are performed using the CASTEM code developed by the French
Commissariat aÁ l'Energie Atomique. They consider the circular geometry described in Section 5 and
Appendices A and B (see Fig. 5). The radius of the disk is taken as R � 100, which is much larger than
the unit length of the crack extension, as required by condition (31). The mesh is composed of 2826
linear traingles and bilinear quadrangles and comprises 2477 nodes. It is of course re®ned near the
corner point O and even more so near the tip of the crack extension: the average size of the elements is
10 near the external boundary, 0.1 near the corner point and 0.001 near the extended crack tip. The
calculations are performed in plane strain. The values of Young's modulus and Poisson's ratio used are
E =200,000 MPa and n � 0:3. In fact, it is easy to see that the functions looked for are independent of
the value of Young's modulus, but that they do depend upon that of Poisson's ratio, because the
contact conditions involve the displacements which depend on that parameter. The stress intensity
factors at the tip of the extended crack, which provide the values of the universal functions looked for,
as explained in Section 5 and Appendices A and B, are evaluated using the so-called Gÿ y method
developed by Destuynder et al. (1983), the accuracy of which is well established.

It will be seen in Section 7 that the widely accepted principle of local symmetry of Goldstein and
Salganik (1974) imposes that the only physically possible value of the kink angle j is

j � j0 ' ÿ77:38 �32�
(for KII > 0, as assumed here; for KII < 0, it is trivial by symmetry that j would take the value
j � ÿj0 ' �77:38). Therefore a single mesh is constructed, for this value of the kink angle.

It is found numerically that in all calculations required to get the values of
~Fp,II�j0�, ~Gp,I�j0� �not ~Gp,II�j0�� and ~Hp,II�j0� (see Section 5 and Appendices A and B), no contact can
be observed anywhere between the crack lips, neither on the extension nor on the principal branch: the
extended crack is entirely open. This implies that these quantities are exactly the same as in ordinary
elastic fracture mechanics without contact, that is (see eqns (17) and (18), and (28) and (29)):

~F I,II�j0� � FI,II�j0 � ' 1:23, ~F II,II�j0� � FII,II�j0� ' 0; �33�

~G I,I�j0� � GI�j0� ' 1:62, ~G II,I�j0� � GII�j0� ' 0:49; �34�

~H I,II�j0� � HI,II�j0 � ' 0:02, ~H II,II�j0� � HII,II�j0� ' 1:35: �35�

The values of the functions without contact here have been taken from the works of Amestoy (1987)
and Amestoy and Leblond (1992). The numerical accuracy on these values is of the order of 0.01.

On the other hand, in the calculation required (see Appendix A) to compute the quantities ~Gp,II�j0�
(which do not exist in ordinary elastic fracture mechanics without contact, see eqn (29)), contact occurs
between the crack lips, on the principal branch, away from the corner point O (see Fig. 6), when the
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loading applied on the boundary of the disk is ff II�y� � er�y�g � TIIfgII�y� � er�y�g (with TII < 0, TII 4 0, see
Appendix A). This is quite normal since far away from the open crack extension, the negative stress
TII � s22 (where the indices refer to the frame Ox1x2 `adapted' to the crack prior to kinking) tends to
close the principal branch of the crack.

This phenomenon puts extra restrictions on the envisageable values of both R and TII. Indeed, let us
denote l the length of that part (the `separation zone') of the principal branch of the crack where
contact does not occur (see Fig. 6). The fact that TII must be `small' means that its e�ect must be small
in the vicinity of the crack extension. Hence the contact it creates between the lips of the principal
branch of the crack must occur far from the crack extension; in other words, the length l of the
separation zone on the principal branch of the crack must be large as compared to the unit length of the
crack extension:

l� 1: �36�

This condition depends upon the values of both R and TII. Further, since asymptotically, far away from
the point O, the crack lips must be in contact because of the presence of TII, the radius R, which of
course cannot be truly in®nite, must at least be large enough for the length of the contact zone to be
comparable to it; in other words, the length l of the separation zone must be small as compared to it:

l� R: �37�

This condition also depends on both R and TII.
On trial and error, it is found that TII � ÿ0:065 is a good value. Indeed it satis®es conditions (A7) of

Appendix A. Furthermore it generates a contact zone on the principal branch of the crack of length
Rÿ l ' 89, that is, a separation zone of length l ' 11. This value satis®es the two conditions (36), (37)
(with R � 100). Using the procedure described in Appendix A, one then ®nds the following values for
the quantities ~Gp,II�j0�:

~G I,II�j0� ' 1:2, ~G II,II�j0� ' ÿ2:4: �38�

Fig. 6. Schematic deformation of the crack in the calculation required to get the quantities ~Gp,II�j0�.
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The accuracy here is not known with precision, but is certainly not as good as that for the other
quantities which are identical to their counterparts without contact.

7. Conclusions concerning the path followed by the crack

All necessary elements are now gathered to discuss the beginning of the propagation path of the
crack. Since it is assumed to be open, at least in the vicinity of its tip, after the initial kink, it is
reasonable to adopt, as a propagation criterion for prediction of the crack path, the principle of local
symmetry of Goldstein and Salganik (1974). This principle is well-known and widely accepted, and
convincing theoretical arguments in its favor have been provided by Amestoy (1987). It stipulates that
the path followed by the crack is such that the second stress intensity factor KII�s� at the tip of the
extended crack is identically zero all along this path. This means that all terms in the expansion of KII�s�
in powers of the crack extension length s must be zero; in particular, by eqn (22), one must have

K �II � 0; K
�1=2�
II � 0: �39�

Combining condition (391) with eqn (172), with KII > 0 and therefore 6� 0, one sees that the kink angle
j must satisfy the equation

~F II,II�j� � FII,II�j� � 0;

using the values of the function FII,II provided by Amestoy (1987) and Amestoy and Leblond (1992), one
concludes that the solution of this equation is given by eqn (32). Thus the kink angle is completely
determined independently of the ( positive ) value of KII.

5 The di�erence with respect to the case where the
crack is open prior to the kink is that in the latter case, there are two initial stress intensity factors KI

and KII, so that, by eqn (182), eqn (391) reads

FII,I�j�KI � FII,II�j�KII � 0�) FII,I�j�
FII,II�j� � ÿ

KII

KI
,

which determines the kink angle j as a continuous function of the ratio KII=KI. In other words, if the
crack is initially open, there is an extra `degree of freedom' (the ratio KII=KI) that generates a
continuous range of possible kink angles which does not exist if the crack is initially closed.

It should be noted that use of any of the other criteria which have been proposed in the literature,
such as the maximum energy release rate criterion, etc., would lead to the same qualitative conclusion,
namely that the kink angle is uniquely determined if the crack is initially closed (although the value
predicted would be slightly di�erent; for instance it would be ÿ75.88 for the maximum energy release
rate criterion, instead of ÿ77.38). Again, this is because these criteria give the value of j as a function of
the ratio KII=KI, the value of which is ®xed to in®nity in the presence of initial crack closure (since KI �
0 then).

As mentioned above, what precedes concerns the case where KII > 0. If KII < 0, it is clear by
symmetry that the value of the kink angle that will lead to an open crack extension and a zero K �II will
be ÿj0 � �77:38. Thus there are in fact two possible values for the kink angle j:ÿ 77:38 if KII > 0 and
+77.38 if KII < 0.

Fatigue experiments in mode II for an initially closed crack have been recently performed by Pinna

5 But in fact the value of KII is not arbitrary, since it must be such that propagation of the crack occurs.
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(1997). He observed that after an initial phase where the crack remains straight and closed and
propagates in pure mode II, it ®nally kinks. The propagation path is often quite chaotic at a
microscopic scale, but it is rather regular at the macroscopic scale. The (macroscopic) kink angle
amounts to about 708, which is in acceptable agreement with the above prediction.

Let us come back to our theoretical analysis of the crack path, supposing again that KII > 0, and now
consider the condition imposed by eqn (392). By eqn (282), it reads

~G II,I�j0�TI � ~G II,II�j0 �TII � a ~H II,II�j0�KII � 0

, GII�j0 �TI � ~G II,II�j0�TII � aHII,II�j0 �KII � 0

, a � ÿGII�j0�TI � ~G II,II�j0�TII

HII,II�j0�KII

' 1

KII

� ÿ 0:36TI � 1:8TII � �40�

where eqns (342), (352), (382) have been used. This formula yields the value of the initial curvature
parameter a of the crack extension, as a function of the initial stress intensity factor KII and non-
singular stresses TI and TII.

It is interesting to see whether or not the signs of the kink angle j0 and the curvature parameter a are
identical. Indeed, if they are not, it means that after the initial kink, the crack tends to come back to its
original direction. On the contrary, if they are, the crack tends to further deviate from its original
direction after the kink. Clearly, this behavior depends on the values of the initial non-singular stresses
TI, TII.

Let us ®rst investigate the e�ect of TI, assuming TII � 0. If TI is positive, by eqn (402), a is negative,
hence its sign is the same as that of j0, and therefore the crack tends to further deviate from its initial
direction after the initial kink. On the other hand, if TI is negative, the crack tends to come back to its
initial direction after the kink. These conclusions concerning the e�ect of TI are similar to those arrived
at by Cotterell and Rice (1980), but in a somewhat di�erent context: here the crack lips are in contact
initially and the kink angle is large; in Cotterell and Rice's (1980) study, there was no contact and the
kink angle was small, because jKIIj was much smaller than KI.

Let us now examine the e�ect of TII < 0, assuming TI � 0. Eqn (402) implies then a< 0. Hence the
signs of j0 and a are the same, which means that the e�ect of the second (negative) non-singular stress
is to make the crack extension further deviate from its original direction.

These conclusions concerning the e�ect of the initial non-singular stresses were arrived at by assuming
KII > 0. However, it is easy to see by simple symmetry considerations that they still hold for KII < 0. In
brief, whatever the sign of KII:

. For TII � 0, the crack tends to further deviate from its initial direction if TI > 0, and to come back to it
if TI < 06.

. For TI � 0 and TII < 0 (which is necessary for the crack to be closed initially), the crack tends to
further deviate from its original direction.

6 It is recalled that TI represents a simple tension or compression in the direction parallel to the original tangent to the crack at

its initial tip O, whereas TII < 0 represents a simple compression in the perpendicular direction.
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The latter conclusion is completely speci®c to the case where contact initially occurs between the crack
lips, since there is no such thing as TII in the absence of contact.

Unfortunately, no experiments concerning the in¯uence of TII upon the crack path for an initially
closed crack seem available in the literature. Such experiments would not be di�cult to perform: it
would su�ce to load some precracked axisymmetric specimen in combined compression and torsion.
Without anticipating too much the results of such experiments, one may reasonably conjecture that they
will most probably con®rm our theoretical conclusion that the e�ect of TII�< 0� is to enhance the
deviation of the crack from its original direction after the initial kink. Indeed, assuming for instance
KII > 0 and looking at Fig. 6, one easily sees that even with a zero KII�s� just after the kink (as
stipulated by the principle of local symmetry), TII will generate a positive KII�s� as s will increase if
propagation occurs in a straight manner, which will in fact induce further deviation (curvature) of the
crack extension from the initial direction of the crack.
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Appendix A. Method for calculating the functions ÄGp,q�jjj�

Our starting point here consists of eqns (27) and (28). If we consider the functions ~Gp,I�j� for
instance, we see that these equations imply that

~Gp,I�j� �
@L�1=2�p

@T
ÿ
j, 1, 0, 0;

�
f II�y� � er�y�

	�
� �gI
�y� � er�y�

	

�
"
@L�1=2�p

@TI

�
j, 1, 0, 0;

�
f II�y� � er�y�

	
� TI

�
gI
�y� � er�y�

	�#
TI�0

� lim
TI 4 0

1

TI

h
L�1=2�p

�
j, 1, 0, 0;

�
f II�y� � er�y�

	
� TI

�
gI
�y� � er�y�

	�ÿ L�1=2�p

ÿ
j, 1, 0, 0;

�
f II�y� � er�y�

	�i
:

�A1�

Now consider the quantity L�1=2�p �j, 1, 0, 0; T�. By the very de®nition (19) of L�1=2�, one has, for any
loading T:

L�1=2�p �j, 1, 0, 0; T� � lim
s 40

1��
s
p �

Lp�j, 1, 0, 0, s; T� ÿ L�p�j, 1, 0; T��

� lim
s 4 0

�
Lp

�
j,

1

s
, 0, 0, 1; T

�
ÿ L�p

�
j,

1

s
, 0; T

��
(by eqns (8) and (10) with l � 1=s)
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� lim
R 4 �1

�
Lp�j, R, 0, 0, 1; T� ÿ L�p�j, R, 0; T��

(where R � 1=s)

� lim
R 4 �1

�
Lp�j, R, C � 0, a � 0, s � 1; T� ÿ L�p�j, R, C � 0; T��: �A2�

Inserting eqn (A2) into eqn (A1), one gets

~Gp,I�j� � lim
R 4 �1

lim
TI 4 0

1

TI

�
Lp

�
j, R, C � 0, a � 0, s � 1;

�
f II�y� � er�y�

	
� TI

�
gI
�y� � er�y�

	�
ÿLp

ÿ
j, R, C � 0, a � 0, s � 1;

�
f II�y� � er�y�

	�
ÿL�p

�
j, R, C � 0;

�
f II�y� � er�y�

	
� TI

�
gI
�y� � er�y�

	�

�L�p
ÿ
j, R, C � 0;

�
f II�y� � er�y�

	��
: �A3�

We shall now show that the last two terms of this expression cancel out. The physical interpretation of
the expression L�p�j, R, C � 0; T� is recalled to be as follows. Consider a circular disk of centre O, of
radius R, containing a straight (C= 0) edge crack with an in®nitesimal extension making an angle j
with the principal branch. Then L�p�j, R, C � 0; T� represents the p-th stress intensity factor at the tip
of the extended crack generated by the loading T applied on the boundary of the disk. Now adding the
traction ®eld TIfgI�y� � er�y�g to the traction ®eld ffII�y� � er�y�g on this boundary does not change the
stress intensity factor KII before the kink, because it only results then in adding an extra uniform stress
®eld s11 � TI (where the indices refer to the frame Ox1x2 `adapted' to the crack prior to kinking, see
Fig. 1). Therefore, by eqn (17), it does not change the stress intensity factors just after the kink either:

L�p
�
j, R, C � 0;

�
f II�y� � er�y�

	
� TI

�
gI
�y� � er�y�

	� � L�p
ÿ
j, R, C � 0;

�
f II�y� � er�y�

	�
,

which is the announced result.
It follows from there and eqn (A3) that

~Gp,I�j� � lim
R 4 �1

lim
TI 4 0

1

TI

�
Lp

�
j, R, C � 0, a � 0, s � 1;

�
f II�y� � er�y�

	
� TI

�
gI
�y� � er�y�

	�

ÿLp

ÿ
j, R, C � 0, a � 0, s � 1;

�
f II�y� � er�y�

	��
: �A4�

What this equation says is the following. Let us consider, like in Section 5 above, a circular disk of
centre O, of radius R4 �1 (in practice verifying condition (31)) containing a straight (C= 0) edge
crack with a straight (a = 0) extension of unit (s = 1) length making an angle j with the principal
branch (Fig. 5). Then, to get ~Gp,I�j�, one must compare, using the ®nite element method, the p-th stress
intensity factors at the tip of the extended crack generated by the application of the traction ®elds
ff II�y� � er�y�g and ff II�y� � er�y�g � TIfgI�y� � er�y�g, where TI is `small', on the boundary of that disk. Since
the traction ®elds ff II�y� � er�y�g and fgI�y� � er�y�g are of order unity, the condition to be ful®lled by TI is

jTIj � 1: �A5�
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The same reasoning can be made for the calculation of the functions ~Gp,II�j�, with the only di�erence
that TII is subject to the restrictive condition TII< 0, which arises from the hypothesis that the crack is
initially closed. The ®nal formula for ~Gp,II�j� is analogous to eqn (A4) for ~Gp,I�j� except for this
restriction:

~Gp,II�j� � lim
R 4 �1

lim
TII 4 0ÿ

1

TII

�
Lp

�
j, R, C � 0, a � 0, s � 1;

�
f II�y� � er�y�

	
� TII

�
gII
�y� � er�y�

	�

ÿLp

ÿ
j, R, C � 0, a � 0, s � 1;

�
f II�y� � er�y�

	��
: �A6�

The practical method for computation of the functions ~Gp,II�j� is the same as that for the functions
~Gp,I�j�, with the sole di�erence that the traction ®eld ff II�y� � er�y�g � TIfgI�y� � er�y�g must be replaced by
ff II�y� � er�y�g � TIIfgII�y� � er�y�g. The conditions to be ful®lled by TII are

TII < 0, jTIIj � 1: �A7�

Appendix B. Method for calculating the functions Hp,II�jjj�

Eqns (27) and (28) imply that

~Hp,II�j� �
@L�1=2�p

@a

ÿ
j, 1, 0, 0;

�
f II�y� � er�y�

	�

� lim
a 4 0

1

a

h
L�1=2�p

ÿ
j, 1, 0, a;

�
f II�y� � er�y�

	�
ÿ L�1=2�p

ÿ
j, 1, 0, 0;

�
f II�y� � er�y�

	�i
: �B1�

Now consider the quantity L�1=2�p �j, 1, 0, a; T�. By eqn (19), for any loading T:

L�1=2�p �j, 1, 0, a; T� � lim
s 4 0

1��
s
p
�
Lp�j, 1, 0, a, s; T� ÿ L�p�j, 1, 0; T�

�

� lim
s 4 0

�
Lp

�
j,

1

s
, 0, a

��
s
p

, 1; T
�
ÿ L�p

�
j,

1

s
, 0; T

��
(by eqns (8) and (10) with l � 1=s)

� lim
R 4 �1

h
Lp

ÿ
j, R, 0, a=

����
R
p

, 1; T
�
ÿ L�p�j, R, 0; T�

i
�B2�

(where R01/s).
Inserting eqn (B2) into eqn (B1), we obtain

~Hp,II�j� � lim
R4 �1

lim
a4 0

1

a

h
Lp

�
j, R, 0, a=

����
R
p

, 1;
�
f II�y� � er�y�

	�
ÿ Lp

ÿ
j, R, 0, 0, 1;

�
f II�y� � er�y�

	�i

� lim
R 4 �1

lim
a0 4 0

1����
R
p

a 0

h
Lp

ÿ
j, R, 0, a 0, 1;

�
f II�y� � er�y�

	�
ÿ Lp

ÿ
j, R, 0, 0, 1;

�
f II�y� � er�y�

	�i
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(where a 0 � a=
����
R
p

)

� lim
R 4 �1

lim
a 0 4 0

1

a 0

�
Lp

�
j, R, 0, a 0, 1;

1����
R
p �

f II�y� � er�y�
	�
ÿ Lp

�
j, R, 0, 0, 1;

1����
R
p �

f II�y� � er�y�
	��

(by eqn (7) with l � 1=
����
R
p

). It follows that if we re-note a ' as a,

~Hp,II�j� � lim
R 4 �1

lim
a 4 0

1

a

�
Lp

�
j, R, C � 0, a, s � 1;

1����
R
p �

f II�y� � er�y�
	�

ÿLp

�
j, R, C � 0, a � 0, s � 1;

1����
R
p �

f II�y� � er�y�
	��

: �B3�

Eqn (B3) says that the functions ~Hp,II�j� can be calculated (by the ®nite element method) in the
following way. Consider, like in Section 5 and Appendix A, a circular disk of centre O, radius R4 �
1 (in practice satisfying condition (31)) containing a straight (C= 0) edge crack endowed with an
extension of unit (s = 1) length making an initial angle j with the principal branch. Enforce the loading
�1= ����

R
p �ff II�y� � er�y�g on the boundary of this disk. Then ~Hp,II�j� can be obtained by comparing the p-th

stress intensity factors at the tip of the extended crack in the cases where the crack extension is curved
(a 6� 0) and where it is not (a = 0). The curvature parameter a must be `small' for the comparison; in
practical terms, this means that the distance between the tips of the two crack extensions (curved and
straight) must be small as compared to the unit extension length, or in other words (see eqn (1)) that a
must satisfy the condition

jaj � 1: �B4�
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